Low cost turbidity sensor assembly, calibration and testing for water quality monitoring

Authors

  • Adolfo Enrique Guerrero Escobedo Universidad Nacional de Trujillo https://orcid.org/0000-0003-4512-8684
  • Carlos Vásquez-Blas Universidad Nacional de Trujillo
  • Wilson Reyes-Lázaro Universidad Nacional de Trujillo
  • Ernesto Segundo Wong-López Universidad Nacional de Trujillo
  • Hernán Edwin Verde-Luján Universidad Nacional de Barranca

DOI:

https://doi.org/10.52807/qunab.v1i2.16

Keywords:

Arduino, code, monitor, turbidimeter

Abstract

This article describes the methodology used to assemble a turbidimeter from a set of electronic devices, consisting of a sensor, a data conversion module, and an Arduino microcontroller. The elements were assembled following the technical specifications, and the necessary coding for its operation was carried out. The objective was to determine the calibration curve of the turbidity sensor with the help of the commercial HACH 2100Q turbidimeter. Eight mixtures of clay and water in different proportions were prepared; for each of them, 10 voltage readings were taken with the sensor and 10 turbidity readings with the HACH equipment. The correlation between both variables was evaluated, obtaining a quadratic equation with R2 equal to 99.87%. The percentage error of the measurements was 1.75%. The statistical parameters "p" for the coefficients of the model and for the analysis of variance were less than 0.05, indicating significance at 95%. The turbidity range evaluated was 0 500 ppm.

References

Acebo-González, D., & Hernández-García, A. T. (2013). Los métodos Turbidimétricos y sus aplicaciones en las ciencias de la vida. Revista CENIC. Ciencias Biológicas, 44(1), 118. https://www.redalyc.org/pdf/1812/181226886003.pdf

Arifin, A., Irwan, I., Abdullah, B., & Tahir, D. (2017). Design of sensor water turbidity based on polymer optical fiber. 2017 International Seminar on Sensors, Instrumentation, Measurement and Metrology (ISSIMM), 146149. https://doi.org/10.1109/ISSIMM.2017.8124280

Azman, A. A., Rahiman, M. H. F., Taib, M. N., Sidek, N. H., Abu Bakar, I. A., & Ali, M. F. (2016). A low cost nephelometric turbidity sensor for continual domestic water quality monitoring system. 2016 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), 202207. https://doi.org/10.1109/I2CACIS.2016.7885315

De Boer Dias, C., Minetto, B., Tassi, R., & Allasia Picillini, D. G. (2019). Desenvolvimento e calibração de turbidímetro de baixo custo. XXIII Simposio Brasileiro de Recursos Hídricos. http://abrh.s3.amazonaws.com/Eventos/Trabalhos/107/XXIII-SBRH0940-1-20190512-191607.pdf

Guerrero Escobedo, A. E., Mendoza Bobadilla, J. L., Verde Luján, H. E., Rodriguez Espinoza, R. F., Celis Rojas, S. R., Leiva Jacobo, P. A., & Pedro Vilchez, S. A. (2021). Remoción de turbidez de aguas del canal madre de Chavimochic empleando diseño de mezcla de coagulantes. Alpha Centauri, 2(3), 6071. https://doi.org/10.47422/ac.v2i3.41

Gunawardena, N., Pardyjak, E. R., Stoll, R., & Khadka, A. (2018). Development and evaluation of an open-source, low-cost distributed sensor network for environmental monitoring applications. Measurement Science and Technology, 29(2), 024008. https://doi.org/10.1088/1361-6501/aa97fb

How To Electronics. (2022). DIY Turbidity Meter using Turbidity Sensor & Arduino. https://how2electronics.com/diy-turbidity-meter-using-turbidity-sensor-arduino/

Irvine, C. A., Backus, S., Cooke, S., Dove, A., & Gewurtz, S. B. (2019). Application of continuous turbidity sensors to supplement estimates of total phosphorus concentrations in the Grand River, Ontario, Canada. Journal of Great Lakes Research, 45(4), 840849. https://doi.org/10.1016/j.jglr.2019.05.007

Kelechi, A. H., H. Alsharif, M., Chukwudi-eke Anya, A., U. Bonet, M., Aiyudubie Uyi, S., Uthansakul, P., Nebhen, J., & A. Aly, A. (2021). Design and Implementation of a Low-Cost Portable Water Quality Monitoring System. Computers, Materials & Continua, 69(2), 24052424. https://doi.org/10.32604/cmc.2021.018686

Kitchener, B. G. B., Dixon, S. D., Howarth, K. O., Parsons, A. J., Wainwright, J., Bateman, M. D., Cooper, J. R., Hargrave, G. K., Long, E. J., & Hewett, C. J. M. (2019). A low-cost bench-top research device for turbidity measurement by radially distributed illumination intensity sensing at multiple wavelengths. HardwareX, 5, e00052. https://doi.org/10.1016/j.ohx.2019.e00052

Nuzula, N. I., Sakinah, W., & Endarko. (2017). Manufacturing temperature and turbidity sensor based on ATMega 8535 microcontroller. 030108. https://doi.org/10.1063/1.4968361

Parra, L., Rocher, J., Escrivá, J., & Lloret, J. (2018). Design and development of low cost smart turbidity sensor for water quality monitoring in fish farms. Aquacultural Engineering, 81, 1018. https://doi.org/10.1016/j.aquaeng.2018.01.004

Prerana, D., Shenoy, M. R., Pal, B. P., & Gupta, B. D. (2012). Design, Analysis, and Realization of a Turbidity Sensor Based on Collection of Scattered Light by a Fiber-Optic Probe. IEEE Sensors Journal, 12(1), 4450. https://doi.org/10.1109/JSEN.2011.2128306

Román-Herrera, C., Loza-Matovelle, D., Segura, L., & Dabirian, R. (2016). The construction of an open source based low cost turbidity sensor. ITECKNE Innovación En Investigación En Ingeniería, 13(1), 1722.

Snyder, L., Potter, J. D., & McDowell, W. H. (2018). An Evaluation of Nitrate, fDOM, and Turbidity Sensors in New Hampshire Streams. Water Resources Research, 54(3), 24662479. https://doi.org/10.1002/2017WR020678

Trevathan, J., Read, W., & Schmidtke, S. (2020). Towards the Development of an Affordable and Practical Light Attenuation Turbidity Sensor for Remote Near Real-Time Aquatic Monitoring. Sensors, 20(7), 1993. https://doi.org/10.3390/s20071993

Trevathan, J., Schmidtke, S., Read, W., Sharp, T., & Sattar, A. (2021). An IoT General-Purpose Sensor Board for Enabling Remote Aquatic Environmental Monitoring. Internet of Things, 16, 100429. https://doi.org/10.1016/j.iot.2021.100429

Wang, Y., Rajib, S. M. S. M., Collins, C., & Grieve, B. (2018). Low-Cost Turbidity Sensor for Low-Power Wireless Monitoring of Fresh-Water Courses. IEEE Sensors Journal, 18(11), 46894696. https://doi.org/10.1109/JSEN.2018.2826778

Wickert, A. D., Sandell, C. T., Schulz, B., & Ng, G.-H. C. (2019). Open-source Arduino-compatible data loggers designed for field research. Hydrology and Earth System Sciences, 23(4), 20652076. https://doi.org/10.5194/hess-23-2065-2019

QuantUNAB

Downloads

Published

2022-07-25

How to Cite

Low cost turbidity sensor assembly, calibration and testing for water quality monitoring. (2022). QuantUNAB, 1(2), e16. https://doi.org/10.52807/qunab.v1i2.16