Más allá del nódulo: potencial agro-biotecnológico del microbioma endofítico en nódulos simbióticos de leguminosas

Autores/as

  • Renzo Alfredo Valdez-Nuñez Universidad Nacional de Barranca https://orcid.org/0000-0002-2513-8423
  • Winston Franz Ríos-Ruiz Universidad Nacional de San Martín
  • Eulogio J. Bedmar Estación Experimental del Zaidín

DOI:

https://doi.org/10.52807/qunab.v1i1.11

Palabras clave:

bacterias endófitas de nódulos, bioprospección, co-inoculación, rizobios

Resumen

La fijación biológica de nitrógeno mediante la simbiosis leguminosa-rizobio es uno de los procesos de mayor importancia en el planeta Tierra (o al menos en nuestro planeta). Desde su descubrimiento, la simbiosis fue pragmatizada de modo estricto a los rizobios; sin embargo, aislamientos procedentes de nódulos desinfectados superficialmente esterilizados y que fallaban al nodular la planta huésped, eran considerados contaminantes. Estos no rizobios se denominan Bacterias Endófitas No Nodulantes (BENN), que constituyen un grupo polifásico de bacterias del suelo capaces de compartir el nódulo con los rizobios. Existen reportes sobre la diversidad filogenética de las BENN, incluso la co-inoculación con rizobios efectivos mejoran los parámetros simbióticos, por la diversidad de características promotoras de crecimiento y de biocontrol que ejercen durante el proceso de infección y colonización del interior del nódulo simbiótico. El potencial biotecnológico de estos microorganismos es todavía un campo por explorar, el cual puede ir desde la biotecnología agropecuaria hasta la biomédica. Esta revisión se centra en actualizar los conceptos sobre las BENN, su papel en el nódulo simbiótico, la diversidad filogenética, así como las principales técnicas de estudio y su potencial en la industria biotecnológica peruana.

Referencias

Azani, N., Babineau, M., Bailey, C. D., Banks, H., Barbosa, A., Pinto, R. B., Boatwright, J., Borges, L., Brown, G., Bruneau, A., Candido, E., Cardoso, D., Chung, K.-F., Clark, R., Conceição, A. deS., Crisp, M., Cubas, P., Delgado-Salinas, A., Dexter, K., Zimmerman, E. (2017). A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny The Legume Phylogeny Working Group (LPWG). Taxon, 66(1), 4477. https://doi.org/10.12705/661.3

Benito, P., Alonso-Vega, P., Aguado, C., Luján, R., Anzai, Y., Hirsch, A. M., & Trujillo, M. E. (2017). Monitoring the colonization and infection of legume nodules by Micromonospora in co-inoculation experiments with rhizobia. Scientific Reports, 7(1), 11051. https://doi.org/10.1038/s41598-017-11428-1

Bhatt, K., Suyal, D. C., Kumar, S., Singh, K., & Goswami, P. (2022). New insights into engineered plant-microbe interactions for pesticide removal. Chemosphere, 309, 136635. https://doi.org/10.1016/j.chemosphere.2022.136635

Brígido, C., Menéndez, E., Paço, A., Glick, B. R., Belo, A., Félix, M. R., Oliveira, S., & Carvalho, M. (2019). Mediterranean Native Leguminous Plants: A Reservoir of Endophytic Bacteria with Potential to Enhance Chickpea Growth under Stress Conditions. Microorganisms, 7(10), 392. https://doi.org/10.3390/microorganisms7100392

De Meyer, S. E., De Beuf, K., Vekeman, B., & Willems, A. (2015). A large diversity of non-rhizobial endophytes found in legume root nodules in Flanders (Belgium). Soil Biology and Biochemistry, 83, 111. https://doi.org/10.1016/j.soilbio.2015.01.002

Egamberdieva, D., Wirth, S. J., Shurigin, V. V., Hashem, A., & Abd_Allah, E. F. (2017). Endophytic Bacteria Improve Plant Growth, Symbiotic Performance of Chickpea (Cicer arietinum L.) and Induce Suppression of Root Rot Caused by Fusarium solani under Salt Stress. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.01887

Etesami, H. (2022). Root nodules of legumes: A suitable ecological niche for isolating non-rhizobial bacteria with biotechnological potential in agriculture. Current Research in Biotechnology, 4, 7886. https://doi.org/10.1016/j.crbiot.2022.01.003

Etesami, H., & Adl, S. M. (2020). Can interaction between silicon and nonrhizobial bacteria help in improving nodulation and nitrogen fixation in salinitystressed legumes? A review. Rhizosphere, 15, 100229. https://doi.org/10.1016/j.rhisph.2020.100229

Fan, M., Liu, Z., Nan, L., Wang, E., Chen, W., Lin, Y., & Wei, G. (2018). Isolation, characterization, and selection of heavy metal-resistant and plant growth-promoting endophytic bacteria from root nodules of Robinia pseudoacacia in a Pb/Zn mining area. Microbiological Research, 217, 5159. https://doi.org/10.1016/j.micres.2018.09.002

Foyer, C. H., Nguyen, H., & Lam, H.-M. (2019). Legumes-The art and science of environmentally sustainable agriculture. Plant, Cell & Environment, 42(1), 15. https://doi.org/10.1111/pce.13497

Kan, F. L., Chen, Z. Y., Wang, E. T., Tian, C. F., Sui, X. H., & Chen, W. X. (2007). Characterization of symbiotic and endophytic bacteria isolated from root nodules of herbaceous legumes grown in QinghaiTibet plateau and in other zones of China. Archives of Microbiology, 188(2), 103115. https://doi.org/10.1007/s00203-007-0211-3

Lace, B., & Ott, T. (2018). Commonalities and Differences in Controlling Multipartite Intracellular Infections of Legume Roots by Symbiotic Microbes. Plant and Cell Physiology, 59(4), 666677. https://doi.org/10.1093/pcp/pcy043

Li, J. H., Wang, E. T., Chen, W. F., & Chen, W. X. (2008). Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biology and Biochemistry, 40(1), 238246. https://doi.org/10.1016/j.soilbio.2007.08.014

Liu, J., Wang, E. T., Ren, D. W., & Chen, W. X. (2010). Mixture of endophytic Agrobacterium and Sinorhizobium meliloti strains could induce nonspecific nodulation on some woody legumes. Archives of Microbiology, 192(3), 229234. https://doi.org/10.1007/s00203-010-0543-2

Magadlela, A., Pérez-Fernández, M. A., Kleinert, A., Dreyer, L. L., & Valentine, A. J. (2016). Source of inorganic N affects the cost of growth in a legume tree species ( Virgilia divaricata ) from the Mediterrean-type Fynbos ecosystem. Journal of Plant Ecology, 9(6), 752761. https://doi.org/10.1093/jpe/rtw015

Martínez-Hidalgo, P., & Hirsch, A. M. (2017). The Nodule Microbiome: N 2 -Fixing Rhizobia Do Not Live Alone. Phytobiomes Journal, 1(2), 7082. https://doi.org/10.1094/PBIOMES-12-16-0019-RVW

Mehrasa, H., Farnia, A., Kenarsari, M. J., & Nakhjavan, S. (2022). Correction to: Endophytic Bacteria and SA Application Improve Growth, Biochemical Properties, and Nutrient Uptake in White Beans Under Drought Stress. Journal of Soil Science and Plant Nutrition, 22(3), 34473447. https://doi.org/10.1007/s42729-022-00898-6

Pandya, M., Naresh Kumar, G., & Rajkumar, S. (2013). Invasion of rhizobial infection thread by non-rhizobia for colonization of Vigna radiata root nodules. FEMS Microbiology Letters, 348(1), 5865. https://doi.org/10.1111/1574-6968.12245

Ríos-Ruiz, W. F., Valdez-Nuñez, R. A., Bedmar, E. J., & Castellano-Hinojosa, A. (2019). Utilization of Endophytic Bacteria Isolated from Legume Root Nodules for Plant Growth Promotion (pp. 145176). https://doi.org/10.1007/978-3-030-30926-8_6

Safronova, V. I., Kuznetsova, I. G., Sazanova, A. L., Kimeklis, A. K., Belimov, A. A., Andronov, E. E., Pinaev, A. G., Pukhaev, A. R., Popov, K. P., Akopian, J. A., Willems, A., & Tikhonovich, I. A. (2015). Extra-slow-growing Tardiphaga strains isolated from nodules of Vavilovia formosa (Stev.) Fed. Archives of Microbiology, 197(7), 889898. https://doi.org/10.1007/s00203-015-1122-3

Saini, R., Dudeja, S. S., Giri, R., & Kumar, V. (2015). Isolation, characterization, and evaluation of bacterial root and nodule endophytes from chickpea cultivated in Northern India. Journal of Basic Microbiology, 55(1), 7481. https://doi.org/10.1002/jobm.201300173

Somasegaran, P., & Hoben, H. J. (1994). Handbook for Rhizobia. Springer New York. https://doi.org/10.1007/978-1-4613-8375-8

Sturz, A. V., Christie, B. R., Matheson, B. G., & Nowak, J. (1997). Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biology and Fertility of Soils, 25(1), 1319. https://doi.org/10.1007/s003740050273

Tokgöz, S., Lakshman, D. K., Ghozlan, M. H., Pinar, H., Roberts, D. P., & Mitra, A. (2020). Soybean Nodule-Associated Non-Rhizobial Bacteria Inhibit Plant Pathogens and Induce Growth Promotion in Tomato. Plants, 9(11), 1494. https://doi.org/10.3390/plants9111494

Valdez-Nuñez, R. A., Castro-Tuanama, R., Castellano-Hinojosa, A., Bedmar, E. J., & Ríos-Ruiz, W. F. (2019). PGPR Characterization of Non-Nodulating Bacterial Endophytes from Root Nodules of Vigna unguiculata (L.) Walp. (pp. 111126). https://doi.org/10.1007/978-3-030-17597-9_7

Velázquez, E., Carro, L., Flores-Félix, J. D., Martínez-Hidalgo, P., Menéndez, E., Ramírez-Bahena, M.-H., Mulas, R., González-Andrés, F., Martínez-Molina, E., & Peix, A. (2017). The Legume Nodule Microbiome: A Source of Plant Growth-Promoting Bacteria. In Probiotics and Plant Health (pp. 4170). Springer Singapore. https://doi.org/10.1007/978-981-10-3473-2_3

Wigley, K., Moot, D., Wakelin, S. A., Laugraud, A., Blond, C., Seth, K., & Ridgway, H. (2017). Diverse bacterial taxa inhabit root nodules of lucerne (Medicago sativa L.) in New Zealand pastoral soils. Plant and Soil, 420(12), 253262. https://doi.org/10.1007/s11104-017-3395-6

Zhao, L., Xu, Y., & Lai, X. (2018). Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max L.) and plant growth-promoting properties. Brazilian Journal of Microbiology, 49(2), 269278. https://doi.org/10.1016/j.bjm.2017.06.007

Zineb, F. B., Chahinez, M., Abdelkader, B., Sonia, S., Odile, D., Robin, D., & Antoine, G. (2016). Nodular bacterial endophyte diversity associated with native Acacia spp. in desert region of Algeria. African Journal of Microbiology Research, 10(18), 634645. https://doi.org/10.5897/AJMR2015.7678

UNAB

Publicado

2022-01-25

Cómo citar

Más allá del nódulo: potencial agro-biotecnológico del microbioma endofítico en nódulos simbióticos de leguminosas. (2022). QuantUNAB, 1(1), e11. https://doi.org/10.52807/qunab.v1i1.11

Artículos similares

1-10 de 19

También puede Iniciar una búsqueda de similitud avanzada para este artículo.